Chevron Left
Back to Machine Learning with Python

Learner Reviews & Feedback for Machine Learning with Python by IBM

4.7
stars
17,341 ratings

About the Course

Python is a core skill in machine learning, and this course equips you with the tools to apply it effectively. You’ll learn key ML concepts, build models with scikit-learn, and gain hands-on experience using Jupyter Notebooks. Start with regression techniques like linear, multiple linear, polynomial, and logistic regression. Then move into supervised models such as decision trees, K-Nearest Neighbors, and support vector machines. You’ll also explore unsupervised learning, including clustering methods and dimensionality reduction with PCA, t-SNE, and UMAP. Through real-world labs, you’ll practice model evaluation, cross-validation, regularization, and pipeline optimization. A final project on rainfall prediction and a course-wide exam will help you apply and reinforce your skills. Enroll now to start building machine learning models with confidence using Python....

Top reviews

FO

Oct 8, 2020

I'm extremely excited with what I have learnt so far. As a newbie in Machine Learning, the exposure gained will serve as the much needed foundation to delve into its application to real life problems.

RC

Feb 6, 2019

The course was highly informative and very well presented. It was very easier to follow. Many complicated concepts were clearly explained. It improved my confidence with respect to programming skills.

Filter by:

2351 - 2375 of 3,043 Reviews for Machine Learning with Python

By Muhammad R F D

•

Mar 4, 2020

Well Explained. Video lecs are very easy to understand and upto the mark...Assignments little bit need more clarification and explanation.

By Ramzi M A A

•

Aug 27, 2024

I prefer if there is a human instructor rather than the machine one... Any way, great course.. it gave me the basics needed in the field.

By Manoj S H

•

May 4, 2023

I needed the syntax to be explained in the video tutorial also because it would be even easier to make the notes on a specific algorithm.

By Luis R

•

Dec 19, 2021

Great course ! I really liked the fact that you don't need to install anything to try out the code and the system works without problems.

By Gaurav S

•

Jul 19, 2019

The Course Could have been a little better if there were more theory and more illustrations at time a disconnect was felt in the Course

By Alonso h g

•

Oct 25, 2021

I think the methodology is outdated. But the bases are the same. It is remarkable that they teach how the algorithm and formulas work.

By Shivam S

•

Nov 7, 2020

Very fascinating course but exercises like final project will be more for exposure to real coding than it will be really more helpful.

By Roman S

•

Jun 9, 2020

Course content and presentation is really good! The only thing i would add is the tuning of hyperparamaters which makes ML what it is.

By Sushant P

•

May 3, 2020

Great course but there should be videos where there is need of explanation on code as well, codes given are very good and covers basic

By Mallangi P R

•

Jan 27, 2020

I really liked the course content, way of teaching and assignments.

This will definitely help a beginner in data analysis to start with

By Beatriz E P

•

Jan 28, 2021

Very nice course!! You learn a lot more of the theory than the practice part, but the concepts are well explained and I learned a lot

By Kiel H

•

Apr 18, 2025

Really great class overall! some of the lecture videos the speaker spoke a little too quickly but I could always rewind and rewatch.

By manasa k

•

Feb 22, 2021

A good course to quickly learn important aspects of ML with Python. The assignments and final exam is also very useful for learning.

By fang f

•

Jul 11, 2020

quite good at the explanation and un-graded exercises.

But the knowledge could be deeper and more about parameters in Sklearn APIs.

By Ankit M

•

Jul 25, 2019

Goodone for anyone who's a beginner in this field. But I personally suggest you to take the Data Analysis with Python course first.

By Raffaele N

•

Sep 13, 2019

Although not extremely detailed in the model optimisation part of the work, it is a very useful way to get started on applied ML.

By Sadanand U

•

May 2, 2019

Gives a good overview of regression and classification algorithms . It could have been expanded to other ML algorithms as well.

By Mohitkumar R

•

Jan 12, 2019

Great course, SO much information and great excercise, In Captone project project guidance need improve,otherwise great course

By Katja M

•

Apr 22, 2021

It was a hard class - the concepts made sense but it is hard to figure out how to use them without more programming examples.

By Vedang D

•

Jun 10, 2024

Great Course to get an understanding of Machine Learning in Python with no background knowledge needed. Cheers to Learning!

By Baptiste M

•

Nov 17, 2019

Very complete course yet full of typos even in the datasets. Lots of information were redundant but an overall great value.

By Eric H

•

Dec 20, 2018

After taking Andrew Ng's ML course, I still learned some new things here, but this course is rather shallow in comparison.

By Mitchell K

•

May 25, 2021

This course was a great refresher from my data mining course in college, but I think some topics need to be expanded upon

By raviteja g

•

Nov 21, 2019

A pretty good course to get familiar with supervised learning. Topics on unsupervised learning were moderately explained.

By Stephane A

•

Apr 29, 2020

I learned a lot and I understood the different clustering algorithms to organize the data like DBSCAN, K-Means and more.