This hands-on course empowers learners to apply and evaluate linear regression techniques in Python through a structured, project-driven approach to supervised machine learning. Designed for beginners and aspiring data professionals, the course walks through each step of the regression modeling pipeline—from understanding the use case and importing key libraries to analyzing variable relationships and predicting outcomes.



Kompetenzen, die Sie erwerben
- Kategorie: Data Manipulation
- Kategorie: Data Analysis
- Kategorie: Regression Analysis
- Kategorie: Data Transformation
- Kategorie: Scikit Learn (Machine Learning Library)
- Kategorie: Data Visualization
- Kategorie: Pandas (Python Package)
- Kategorie: Statistical Modeling
- Kategorie: Exploratory Data Analysis
- Kategorie: Supervised Learning
- Kategorie: Applied Machine Learning
- Kategorie: Statistical Analysis
- Kategorie: Predictive Modeling
- Kategorie: Descriptive Statistics
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
Juli 2025
6 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

In diesem Kurs gibt es 2 Module
This module introduces learners to the foundational concepts and workflow involved in developing a linear regression model using Python. The lessons walk through identifying the use case, importing the essential libraries, performing exploratory data analysis (EDA), and understanding data behavior through visualizations. Learners will analyze univariate and bivariate distributions and investigate data quality elements such as outliers and variable spread—setting the stage for building reliable and interpretable predictive models.
Das ist alles enthalten
6 Videos3 Aufgaben
This module guides learners through the essential steps involved in preparing, training, and evaluating a simple linear regression model in Python. It introduces the importance of understanding variable relationships through bivariate analysis, implements a base model for initial predictions, and interprets model output using prediction comparisons and evaluation metrics. By the end of this module, learners will be able to conduct a basic machine learning run and assess their model’s performance against real-world data.
Das ist alles enthalten
4 Videos3 Aufgaben
Erwerben Sie ein Karrierezertifikat.
Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
Mehr von Software Development entdecken
- Status: Kostenloser Testzeitraum
Edureka
Coursera Project Network
- Status: Kostenloser Testzeitraum
- Status: Kostenloser Testzeitraum
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Weitere Fragen
Finanzielle Unterstützung verfügbar,