This course explores building novel architectures tailored to unique challenges. You'll gain hands-on experience in building custom multimodal models that integrate visual and textual data, and learn to implement reinforcement learning for dynamic response refinement. Through practical case studies, you'll learn advanced fine-tuning techniques, such as mixed precision training and gradient accumulation, optimizing open-source models like BERT and GPT-2. Transitioning from theory to practice, the course also covers the complexities of deploying LLMs to the cloud, utilizing techniques like quantization and knowledge distillation for efficient, cost-effective models. By the end of this course, you'll be equipped with the skills to evaluate LLM tasks and deploy high-performing models.



Quick Start Guide to Large Language Models (LLMs): Unit 3
Dieser Kurs ist Teil von Spezialisierung Quick Start Guide to Large Language Models (LLMs)

Dozent: Pearson
Bei enthalten
Empfohlene Erfahrung
Was Sie lernen werden
Develop custom multimodal models and implement reinforcement learning for dynamic LLM refinement.
Master advanced fine-tuning techniques, optimizing open-source models for specific tasks.
Deploy LLMs to the cloud using quantization, pruning, and knowledge distillation for efficient performance.
Evaluate LLM tasks across various categories, preparing models for real-world applications.
Kompetenzen, die Sie erwerben
- Kategorie: Large Language Modeling
- Kategorie: Deep Learning
- Kategorie: Performance Testing
- Kategorie: Computer Vision
- Kategorie: Application Deployment
- Kategorie: PyTorch (Machine Learning Library)
- Kategorie: Image Analysis
- Kategorie: Reinforcement Learning
- Kategorie: Natural Language Processing
- Kategorie: Generative AI
- Kategorie: Performance Tuning
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
Juli 2025
4 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage

In diesem Kurs gibt es 1 Modul
In this module, you will move beyond basic models to create new architectures tailored to specific challenges. You'll focus on multimodality, integrating different types of data to build models that interpret both text and visuals. Through a hands-on case study, you'll learn to develop a system that answers questions based on images using transformer-based encoders and decoders with cross-attention mechanisms. You'll explore reinforcement learning for large language models (LLMs), focusing on alignment. Your models will learn and refine responses based on live and modeled feedback, setting up training loops that adjust outputs in real time, demonstrated with the open-source Flan-T5 model. You'll dive into the details of open-sourced LLM fine-tuning, using techniques like mixed precision training and gradient accumulation to optimize your training loops for efficiency and precision. Real-world case studies, from multi-label classification to instruction alignment, will provide insights into training LLMs. As you wrap up this module, you'll tackle deployment and evaluation. You'll address the challenges of moving LLMs to the cloud, focusing on optimization through techniques like quantization, pruning, and knowledge distillation. You'll learn to deploy cost-effective models without sacrificing performance. You'll also evaluate LLM tasks, breaking them down into four main categories and providing guidelines for each. Additionally, you'll explore how LLMs structure knowledge within their parameters and extract insights through simple probing mechanisms. By the end of this lesson, you'll have the tools to evaluate LLMs and their ability to solve specific tasks on certain datasets.
Das ist alles enthalten
24 Videos4 Aufgaben
Erwerben Sie ein Karrierezertifikat.
Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
Mehr von Machine Learning entdecken
- Status: Kostenloser Testzeitraum
- Status: Kostenloser Testzeitraum
Google Cloud
- Status: Kostenloser Testzeitraum
Duke University
- Status: Kostenloser Testzeitraum
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Yes, you can preview the first video and view the syllabus before you enroll. You must purchase the course to access content not included in the preview.
If you decide to enroll in the course before the session start date, you will have access to all of the lecture videos and readings for the course. You’ll be able to submit assignments once the session starts.
Once you enroll and your session begins, you will have access to all videos and other resources, including reading items and the course discussion forum. You’ll be able to view and submit practice assessments, and complete required graded assignments to earn a grade and a Course Certificate.
Weitere Fragen
Finanzielle Unterstützung verfügbar,