The field of natural language processing (NLP) aims at getting computers to perform useful and interesting tasks with human language. This course introduces students to the 3 pillars underlying modern NLP: probabilistic language models, simple neural networks with a focus on gradient based learning, and vector-based meaning representations in the form of word embeddings. At the end of the course, students will be able to implement and analyze probabilistic language models based on N-grams, text classifiers using logistic regression and gradient-based learning, and vector-based approaches to word meaning and text classification.



Empfohlene Erfahrung
Was Sie lernen werden
Analyze corpora to develop effective lexicons using subword tokenization.
Develop language models that can assign probabilities to texts.
Design, implement, and evaluate the effectiveness of text classifiers using gradient-based learning techniques.
Design, implement and evaluate unsupervised methods for learning word embeddings.
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
März 2025
4 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.


Erwerben Sie ein Karrierezertifikat.
Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.

In diesem Kurs gibt es 4 Module
This first week of Fundamentals of Natural Language Processing introduces the fundamental concepts of natural language processing (NLP), focusing on how computers process and analyze human language. You will explore key linguistic structures, including words and morphology, and learn essential techniques for text normalization and tokenization.
Das ist alles enthalten
5 Videos5 Lektüren1 Aufgabe
This week explores foundational language modeling techniques, focusing on n-gram models and their role in statistical Natural Language Processing. You will learn how n-gram language models are constructed, smoothed, and evaluated for effectiveness.
Das ist alles enthalten
4 Videos4 Lektüren1 Aufgabe1 Programmieraufgabe
This week introduces text classification and explores logistic regression as a powerful classification technique. You will learn how logistic regression models work, including key mathematical concepts such as the logit function, gradients, and stochastic gradient descent. The week also covers evaluation metrics for assessing classifier performance.
Das ist alles enthalten
6 Videos3 Lektüren1 Aufgabe1 Programmieraufgabe
This final week explores how words can be represented as vectors in a high-dimensional space, allowing computational models to capture semantic relationships between words. You will learn about both sparse and dense vector representations, including TF-IDF, Pointwise Mutual Information (PMI), Latent Semantic Analysis (LSA), and Word2Vec. The module also covers techniques for evaluating and applying word embeddings.
Das ist alles enthalten
7 Videos4 Lektüren1 Aufgabe1 Programmieraufgabe
Dozent

Empfohlen, wenn Sie sich für Algorithms interessieren
University of Colorado Boulder
DeepLearning.AI
Edureka
DeepLearning.AI
Auf einen Abschluss hinarbeiten
Dieses Kurs ist Teil des/der folgenden Studiengangs/Studiengänge, die von University of Colorado Boulderangeboten werden. Wenn Sie zugelassen werden und sich immatrikulieren, können Ihre abgeschlossenen Kurse auf Ihren Studienabschluss angerechnet werden und Ihre Fortschritte können mit Ihnen übertragen werden.¹
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Learners should be proficient in Python programming including the use of packages such as numpy, scikit-learn and pandas. Students should be proficient in data structures and basic topics in algorithm design, such as sorting and searching, dynamic programming, and algorithm analysis. Students should also have basic familiarity with introductory concepts from calculus, discrete probability, and linear algebra.
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
Weitere Fragen
Finanzielle Unterstützung verfügbar,