This course is designed to provide a comprehensive foundation in Azure Machine Learning, equipping learners with essential skills for managing ML workflows within the Azure ML workspace. Participants will begin by understanding core workspace fundamentals, including environment setup, resource management, and key components for ML experimentation. The course progresses to advanced concepts such as optimizing compute resources, managing datasets effectively, and configuring high-performance ML pipelines.



Azure ML: Deploying, Managing, and Experimenting with Models
Dieser Kurs ist Teil von Spezialisierung Exam Prep DP-100: Microsoft Azure Data Scientist Associate

Dozent: Whizlabs Instructor
Bei enthalten
Empfohlene Erfahrung
Kompetenzen, die Sie erwerben
- Kategorie: Cloud Computing
- Kategorie: Microsoft Azure
- Kategorie: Data Management
- Kategorie: Machine Learning
- Kategorie: Data Ethics
- Kategorie: Scalability
- Kategorie: MLOps (Machine Learning Operations)
- Kategorie: Application Deployment
- Kategorie: Artificial Intelligence and Machine Learning (AI/ML)
- Kategorie: Performance Tuning
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
Juni 2025
5 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage

In diesem Kurs gibt es 2 Module
This course provides a deep dive into identifying appropriate data sources, formats, and ingestion strategies for machine learning projects in Azure, ensuring efficient data handling. It emphasizes the principles of selecting the right services and compute options for model training, optimizing performance and scalability. Participants will gain expertise in differentiating between real-time and batch deployment strategies based on consumption needs, enabling informed architectural decisions. Additionally, the course explores MLOps best practices, guiding learners through the design and implementation of scalable workflows and effective Azure ML environment organization, ensuring seamless integration and lifecycle management.
Das ist alles enthalten
11 Videos3 Lektüren2 Aufgaben
This module provides a comprehensive understanding of deploying, registering, and managing machine learning models within Azure Machine Learning, equipping learners with the skills to operationalize ML solutions. Participants will explore concepts such as deploying models to managed online endpoints, MLflow model registration, and applying Blue-Green deployment strategies for seamless updates. The module covers logging and autologging ML models using MLflow, configuring model signatures, and understanding the MLflow model format to enhance interoperability. Learners will gain expertise in Responsible AI practices, including evaluating the Responsible AI dashboard, performing error analysis, and exploring explanations, counterfactuals, and causal analysis. Additionally, the module includes exam tips to help learners succeed in Azure ML certification. By the end of this module, participants will be equipped with practical knowledge to deploy and manage ML models efficiently while ensuring ethical and responsible AI implementation in Azure Machine Learning.
Das ist alles enthalten
18 Videos1 Lektüre3 Aufgaben
Erwerben Sie ein Karrierezertifikat.
Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
Dozent

von
Mehr von Data Management entdecken
- Status: Kostenloser Testzeitraum
- Status: Kostenloser Testzeitraum
Coursera Project Network
- Status: Kostenloser Testzeitraum
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Weitere Fragen
Finanzielle Unterstützung verfügbar,